Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4322)59-03-52 Владивосток (423)249-28-31 Волоград (844)278-03-48 Вологра (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Магнитогорск (3519)55-03-13

Пермь (342) 205-81-47 Ростов-на-Дону (863) 308-18-15 Рязань (4912) 46-61-64 Самара (846) 206-03-16 Санкт-Петербург (812) 309-46-40 Саратов (845) 249-38-78 Севастополь (8692) 22-31-93 Симферополь (3652) 67-13-56 Смоленск (4812) 29-41-54 Сочи (862) 225-72-31 Ставрополь (8652) 20-65-13 Казахстан (772) 734-952-31 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-64 Череповен (8202)49-02-64 Ярославль (4852)69-52-93

https://alfa.nt-rt.ru/ || alf@nt-rt.ru

Россия (495)268-04-70

Устройства сбора и передачи данных	Внесены в Государственный реестр средств
RTU-325 и RTU-325L	измерений 77000 00
	Регистрационный № <u>37288-08</u>
	Взамен №

Выпускаются по ГОСТ 22261-94, техническим условиям ДЯИМ.466453.005 ТУ и документации ООО «Эльстер Метроника».

Назначение и область применения

Устройства сбора и передачи данных RTU 325 и RTU 325L (далее УСПД) предназначены для измерения энергии и мощности, автоматического сбора данных об электропотреблении с электрических счетчиков с цифровыми интерфейсами. Кроме этого УСПД обеспечивают обработку и хранение данных, коммуникации с потребителями информации и обеспечивают управление временем на счетчиках с цифровыми интерфейсами, имеющими встроенные часы.

Область применения УСПД – коммерческий и технический учет электроэнергии на электростанциях, подстанциях, промышленных (и приравненных к ним) предприятиях и организациях, поставляющих и потребляющих электрическую энергию.

Описание

УСПД реализованы на базе промышленных РС-совместимых компьютеров, содержащих в себе процессор, оперативную память, диск на основе флэш-памяти, энергонезависимые часы и интерфейсы ввода-вывода, встроенные средства управления. УСПД имеют одинаковое встроенное программное обеспечение.

УСПД могут поставляться как отдельно, так и в составе ИВК «Альфа Центр» (Госреестр №20481-00)

УСПД позволяют объединять электросчетчики по местам их расположения в объекты контроля с использованием цифровых интерфейсов типа Ethernet, RS-485, RS-232 и как необязательные элементы могут использоваться связные и интерфейсные компоненты увеличивающие дальность и помехозащищенность передачи данных в каналах, а также обеспечивающие преобразование интерфейсов.

Для автоматической коррекции измерений текущего времени имеется возможность подключения GLONAS/GPS-приемника (необязательный элемент).

В объект контроля могут входить от 1 до 16 УСПД типа RTU 325 и, связанных в сеть на основе интерфейса Ethernet.

Максимально возможное число счетчиков, подключаемых к RTU-325, RTU 325L зависит от модификации используемого RTU, числа заданных тарифов, числа образуемых групп, глубины хранения архивных данных и приведено в таблице 1.

Таблица 1.

Наименование УСПД	Максимальное число каналов измерения	Максимальное число подключаемых счетчиков
RTU 325	256	128
RTU 325L	256	128

Измерительные каналы и каналы связи с верхним уровнем системы включают следующие интерфейсы:

- Ethernet 10/100 MB (включая использование ВОЛС с промежуточными конверторами Ethernet TX FX standard);
- RS-232;
- ИРПС;
- RS-422/485 (включая использование ВОЛС с промежуточными конверторами RS-232/422/485 fiber);

Струк	тура условного обозначения RTU 325_ <u>RTU-325- EI- 128- M3-Bxx Mxx Ext UI</u>
1.	Обозначение типа
2.	Базовые интерфейсы Ethernet-10/100BaseT и IrDA/RS-232C *)
3.	Объём энергонезависимой памяти данных: ■ 128- 128Mb, ■ 256- 256Mb; ■ 512-512Mb; ■ 1k – 1024Mb
4.	Состав базовых интерфейсов: ■ R3 – mpu RS-485, ■ R2M – два RS-485 плюс один RS-232C, ■ RM2 – один RS-485 плюс два RS-232C, ■ M3 – mpu RS-232C;
5.	Количество дополнительных интерфейсов RS-485**): В00 — нет, В01 ÷В08 от одного до восьми
6.	Количество дополнительных интерфейсов RS-232C**); • M00 – нет, • M01 ÷ M24 – от одного до двадцати четырех
7.	Эксплуатационный диапазон температур: — Не заполняется - промышленный (от минус 25 до 60 °С), — Ехt – расширенный промышленный (от минус 40 до 70 °С) — по специальному заказу.
8.	Бесперебойное электропитание (внешний аккумулятор): - Не заполняется - отсутствует, - UPS – имеется.

Примечания:

*) Может использоваться IrDA или технологический (для целей программирования УСПД) RS-232C, но не оба одновременно.

Структур	а условного обозначения RTU 325L:	RTU-325L-E2-512-M2-B2
1.	Обозначение типа	
2.	Два интерфейса Ethernet-10/100BaseT	
3.	Объём памяти данных, Mb от 64 до 512	
4.	Два последовательных интерфейсов RS-232C	
5.	Два последовательных интерфейсов RS-485	

Для формирования измерительных каналов и каналов связи с верхним уровнем используются следующие технические средства:

• Преобразователей интерфейсов ADAM 4520 или подобные;

^{**)} Конструктивное ограничение: суммарное количество дополнительных интерфейсов типов Bxx, Mxx не должно превышать 24 шт. (определяется максимальным количеством устанавливаемых 8-канальных плат расширения BBOZA/BBOZA - ZO 3 mt.).

- Мультиплексоров расширителей семейства МПР-16:
- Модемы серии «ZyXEL U-336», или другие hayes-совместимые модемы;
- GSM-модемы (например, «SIEMENS TC35»);
- Радиомодемы (например, «MDS 4710B/9710В», «Радио-ТМ»);
- Спутниковые модемы «Globalstar».
- Ethernet-сервер TCP/IP-COM (с поддержкой подключения к дополнительному интерфейсу Ethernet УСПД для аппаратного разделения сетей).

УСПД типа RTU 325 и RTU 325 L используются для решения следующих задач:

- Сбор информации со счетчиков электроэнергии;
- Сбор данных с подчиненных УСПД;
- Ведение архивов расходов расхода электроэнергии за различные периоды, архивов профилей, подинтервалов, параметров электросети, авточтений;
- Поддержание единого системного времени;
- Прямые и косвенные измерения и вычисления параметров, указанных в Таблице 2;

Таблица 2

	таолица 2
Наименование параметра	Примечание
Показания счетчиков	Расчет ведется по активной, реактивной мощности в
	двух направлениях.
Средние мощности на интервале	Расчет ведется по активной, реактивной мощности в
усреднения 1/3/5 мин.	двух направлениях.
Средние мощности на интервале	Расчет ведется по активной, реактивной мощности в
усреднения 15/30 мин.	двух направлениях.
Максимальная ср. мощность на	Расчет ведется по активной, реактивной энергии в двух
интервале усреднения 15/30 мин.	направлениях суммарно и с раскладкой по тарифам в
	соответствии с тарифной сеткой. Тарифная сетка
	описывается для каждой точки учета с учетом перехода
	зима/лето.
Потребление активной и	Расчет ведется суммарно и с раскладкой по тарифам в
реактивной энергии (включая	соответствии с тарифной сеткой. Тарифная сетка
обратный переток) за:	описывается для каждой точки учета с учетом перехода
Сутки	зима/лето.
• Неделя	
• Месяц	
• Квартал	
• Год	
Активная и реактивная энергии	Расчет ведется суммарно и с раскладкой по тарифам в
нарастающим итогом (включая	соответствии с тарифной сеткой. Тарифная сетка
обратный переток) с начала:	описывается для каждой точки учета с учетом перехода
• Сутки	зима/лето.
• Неделя	drinia/1010.
• Месяц	
•	
• Квартал	
• Год	

Все указанные задачи решаются как для отдельных точек учета, так и для любой образованной группы учета. Все вычисления в УСПД производятся с использованием данных счетчика. Время УСПД должно быть установлено по местному зимнему времени соответствующего часового пояса.

Для обеспечения высокой степени работоспособности УСПД осуществляют самодиагностику и фиксируют все случаи неисправности в журнале событий (в энергонезависимой памяти).

Для защиты измеренных данных и параметров УСПД от несанкционированных изменений предусмотрена механическая и программная защита.

Все подводимые сигнальные кабели к УСПД кроссируются в пломбируемом отсеке корпуса или в отдельном пломбируемом кросс - блоке. Все электронные компоненты УСПД размещены в пломбируемом корпусе.

Все данные и параметры хранятся в энергонезависимой памяти. Предусмотрен самостоятельный старт УСПД после возобновления питания (Back- up).

УСПД обеспечивают сбор измерений и сервисных данных с цифровых интерфейсов счетчиков:

• Альфа

(Эльстер Метроника, г. Москва);

```
ЕвроАльфа 1.0 (А1300) и 1.1 (А1600) (Эльстер Метроника, г. Москва);
                                           (Эльстер Метроника, г. Москва);
Альфа Плюс и Альфа А2
Альфа А3 и Альфа А1800
                                           (Эльстер Метроника, г. Москва);
Альфа А1200
                                           (Эльстер Метроника, г. Москва);
Альфа А1700
                                           (Эльстер Метроника, г. Москва);
Альфа А1140
                                           (Эльстер Метроника, г. Москва);
                                           (Завод им. Фрунзе, Н.Новгород);
C9T4TM.02/.01
C3T4TM.03
                                           (Завод им. Фрунзе, Н.Новгород);
SL7000 (version 3.5/4.0+)
                                           (Actaris / Shlumberger);
ZMD/ZFD
                                           (Landis & Gyr);
                                           (Инкотэкс);
Меркурий 230
CC-301
                                           (Гран Электро);
ION 8500
                                           (Schneider Electric);
ION 7350
                                           (Schneider Electric):
EPQS
                                           (Elgama Electronik);
Гамма 3
                                                  (ГРПЗ, г.Рязань).
```

УСПД обеспечивают сбор параметров электросети с цифровых интерфейсов счетчиков.

	- · · · - · · · · · · · · · · · · · · ·	. F
	ЕвроАльфа 1.1 (А1600)	(Эльстер Метроника, г. Москва);
•	Альфа Плюс и Альфа А2	(Эльстер Метроника, г. Москва);
•	Альфа А3 и Альфа А1800	(Эльстер Метроника, г. Москва);
	Альфа А1200	(Эльстер Метроника, г. Москва);
•	Альфа А1700	(Эльстер Метроника, г. Москва);
	Альфа А1140	(Эльстер Метроника, г. Москва);
•	CЭT4TM.02/.01	(Завод им. Фрунзе, Н.Новгород);
•	CЭT4TM.03	(Завод им. Фрунзе, Н.Новгород);
•	SL7000 (version 3.5/4.0+)	(Actaris / Shlumberger);
	ZMD/ZFD	(Landis & Gyr);
•	Меркурий 230	(Инкотэкс);
	CC-301	(Гран Электро);
	ION 8500	(Schneider Electric);
	ION 7350	(Schneider Electric);
	EPQS	(Elgama Electronik);
•	Гамма 3	(ГРПЗ, г.Рязань).
		•

УСПД обеспечивают сбор подинтервалов мощности с цифровых интерфейсов счетчиков.

```
ЕвроАльфа 1.1 (А1600)
                            (Эльстер Метроника, г. Москва);
Альфа Плюс и Альфа А2
                            (Эльстер Метроника, г. Москва);
Альфа А3 и Альфа А1800
                            (Эльстер Метроника, г. Москва);
C9T4TM.03
                            (Завод им. Фрунзе, Н.Новгород);
ION 8500
                            (Schneider Electric).
```

УСПД обеспечивают возможность одновременного подключения к одному последовательному интерфейсу RS-485 счетчиков разных типов, входящих в один из списков:

Список 1:

•	Альфа	(Эльстер Метроника, г. Москва);
•	ЕвроАльфа 1.0 (А1300) и 1.1 (А1600)	(Эльстер Метроника, г. Москва);
•	Альфа Плюс и Альфа А2	(Эльстер Метроника, г. Москва).
Списо	к 2:	
•	Альфа А3 и Альфа А1800	(Эльстер Метроника, г. Москва).
Списо	к 3:	
•	SL7000	(Actaris / Shlumberger);
•	ZMD/ZFD	(Landis & Gyr).
Списо	к 4:	
•	Альфа А1700	(Эльстер Метроника, г. Москва);
•	Альфа А1140	(Эльстер Метроника, г. Москва).

УСПД обеспечивают автоматический контроль достоверности передаваемой информации по каналу связи со счетчиком.

УСПД обеспечивают автоматическую проверку работоспособности счетчиков с самотестированием с записью в журнал событий УСПД.

Основные технические характеристики

Ţ	а	б	Л	И	Ц	а	3	
---	---	---	---	---	---	---	---	--

Максимальное количество подключаемых		До 128
счетчиков		
Период опроса счетчиков		Не чаще 1 раза в минуту
1	абсолютной погрешности	
	ергии и средней мощности,	+/- 1 единица младшего разряда
	математической обработки	
	ормации, получаемой от	
счетчиков, не более		
	он рабочих температур	
RTU 325	Обычный	(От 0 до +70) °C
	Расширенный (по заказу)	(От –40 до +85) °С
RTU 325 L	Обычный	(От -10 до +55) °С
Напряжение	RTU 325	(85 – 264) В переменного тока или
питания		(100 – 375) В постоянного тока
	RTU 325 L	(9 – 36) В постоянного тока
Потребляемая	RTU 325	Не более 25 ВА
мощность	RTU 325 L	Не более 15 ВА
Масса УСПД	RTU-325	Не более 9 кг
	RTU-325L	Не более 0,8 кг
Габаритные	RTU 325	260;230;330 мм
размеры (длина; ширина; высота)		189;107;36 мм
Хранение данных пр	и отключении питания	Не менее 5 лет
	Без внешней	Не более ± 5 секунд в сутки
Dorneus vona	синхронизации	
Погрешность хода внутренних часов	При внешней	Не более ± 2 секунд
Billy i pennin accor	синхронизации не реже 1	
	раза в час	
Средняя наработка до отказа, не менее		100000 часов
Исполнение корпуса		IP65
Средний срок службы		30 лет

Рабочие условия применения УСПД RTU 325 и RTU 325L

- Температура окружающего воздуха приведена в таблице 3
- Относительная влажность до 95% при температуре плюс 30 °C
- Атмосферное давление от 60 до 106,7 кПа (460 800 мм рт. ст.)

Знак утверждения типа

Знак утверждения типа наносится на титульных листах эксплуатационной документации и на шильдике корпуса УСПД методом офсетной печати.

Комплектность

В комплект поставки комплексов входят:

Таблица 4

УСПД RTU 325 или RTU 325L	1 шт.
Формуляр	На каждое УСПД
Эксплуатационная документация	Один комплект на УСПД
Терминальная программа «Вне инженерный пульт» для RTU	шний Один пакет на УСПД 325:
Терминальная программа «ZOC» для RTU	

Дополнительно по требованию организаций, производящих поверку УСПД, поставляется методика поверки.

Поверка

Поверка производится по документу «Устройства сбора и передачи данных RTU-325 и RTU-325L. Методика поверки ДЯИМ.466.453.005МП.» утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.

Перечень основного оборудования для поверки: частотомер электронный Ф5041, блок питания Б5-30, секундомер СДС, радиочасы МИР РЧ-01; переносной компьютер с возможностью выхода в интернет для связи с тайм-сервером и набором программ: программный пакет AC L Laptop, терминальная программа «Внешний инженерный пульт» для RTU 325; Терминальная программа «ZOC» для RTU 325L.

Межповерочный интервал – 6 лет.

Нормативные документы

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия». «Устройства сбора и передачи данных RTU-325 и RTU-325L». Технические условия. ДЯИМ.466453.005 ТУ.

Заключение

Тип устройств сбора и передачи данных RTU-325 и RTU-325L утверждён с техническими и метрологическими характеристиками, приведёнными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Россия (495)268-04-70

Пермь (342)205-81-47 Ростов-на-Лону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 **Ч**ереповец (8202)49-02-64 Ярославль (4852)69-52-93

https://alfa.nt-rt.ru/ || alf@nt-rt.ru